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ABSTRACT

The irreducible binary error probability of an FSK system with

memory operating over a dispersive channel is analyzed. Binary error
probability is obtuined as a function of both time-delay and Doppler
spread for a simple HF channel model. 1In addition, the effectiveness

of correlated diversity receptions in combatting channel dispersion
is investigated.
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| INTRODUCTION

This memorandum investigates the irreducible error probability of
an FSK communication system that does not employ energy quenching in the
detection process. In contrast to the incoherent matched-filter model
(an energy-quenching device) assumed in the past,’? our model more closely
approximates existing systems that, in effect, employ na-rowband filters
with infinite memory. Thus we examine system performance in the presence
of channel dispersion (at infinite signal-to-noise ratio) when, at any
given time, the energy stored in the detection filters is a function of
the entire history of both the channel variations and the transmitted
signal. In addition, the effectiveness of correlated dual-diversity

reception in combatting channel dispersion is investigated.
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FIG. 1 DUAL-DIVERSITY FSK COMMUNICATION SYSTEM
Figure 1 depicts the communication system under consideration. Bold-

face notation indicates the complex envelope of the corresponding real

narrowband signal. For example, the real signal

1. R, F. Daly, “Analyais of Multipath Fffects on FSK Error Probability for a Simple HF Channel Model,”
Research Memorandy~» 1, Contract SD-189, SHI Project 4554, Stanford Research Institute, Menio Park,
California (Februs, 1964},

2. P, A. Bello and B, 1. Nelin, "The Influence of Fading Spectrum on the Binary Error Probasbility of
Incoherent and D1 ferentially Coherent Matched Filter Receivers,” IRE Trans., PGCS-10, pp. 160-168
(June 1962),



an
() = Re {x(tre'?"N0y
is the on-the-air transmission of an FSK system, and

27
:,(t) = RBRe {Zl(t)e' Io'}
is the real signal received in one of the branches of the dual-diversity
receiving system. The diversity channels are modeled as two randomly
time-varying linear filters with, in general, correiated Gaussian random-
field transfer functious, H,(¢ f) and Hz(t'f).3 If X(f) is the Fourier
transform of X(t), then

Z (t) = | H (. NK(NHer2TIdS, o= 1,2 . (1)
The functions h'(t) and h,(t) are the complex envelopes of the impulse

responses of the narrowband filters centered at the mark and space fre-

quencies, fo - A and fo * N, respectively,
[’Be—ltelﬂ"A(T“t) , t >0
h o) - (2a)
[ t <0
Br—ure“lﬁﬂa(T‘t) , t > 0
hs(t) = . (2b)
i , t <0

After narrowband filtering at the mark and space frequencies, each
diversity branch forms the difference of the mark and space square-law
detected envelopes. The diversity outputs are then summed and sampled

at time T, yielding the decision variable Q.

In one of the cases to be investigated, we assume X(t) to have the

following form:

(3)
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to Ho F. Daly, “tm Modeting the Tine-Varying Frequency«Selective Radio Channel,” Technical Report 2—
Part 11, Contract DA 36-039 SC-90859, SHI Project 4172, Svanford Research Institute, Menlo Park,
Calitornia (July 1und),



A Rt

We obtain this FSK transmission when we assume mark transmitted in the
interval (0,T) and space transmitted for all t outside this interval.

At time t = T, the receiver obtains the statistic
Q = Im(MmI2 - IS (D[ + M2 - [$,(T)]? (4)

and declares mark transmitted in the interval (O, T) if Q - 0. Thus,
assuming mark and space to be equiprobable messages, the probability of
error P_, for X(t) transmitted is the probability that Q is less than
zero,

P, = PlQ<o0] . (3)

e




11 CHARACTERISTIC FUNCTION OF THE DECISION STATISTIC

Decisions are based on the statistic
Q = Im/* - [s,|2+ |m,|2 - |s,|? . (6)

where we have suppressed the argument T appearing in Eq. (4). The sta-
tistic Q is a quadratic form in complex Gaussian random variables. Em-
ploying a result due to Turin,* we obtain an expression tfor the characteristic

function of Q.

l,et V be the vector of mark and space filter outputs,

T
vl - (m;sms,] (1)
and ¢ the Hermitian matrix
1 0 0
R = 0-1 0 0 (8)
0 0 1 o0 !
0 0 0 -t
then
Q = VvTav (9)

is a Hermitian quadratic form in the complex Gaussian variables, m, S“

m $,. Turin showed that Q has a characteristic function of the form

Plt) = T (1 -ieA ™t (10)

The N, arc the eigenvalues of a matrix defined as follows: Lec K, be the

covariance matrix of the vector V,

K, = E{vwT") 5 (11)

oG, Turin, “The Characteristic Function of Hermitian Quadratic Forms in Complex Normal Varisbles,"
Biometrika, Vol, 47, pp. 199-201 {June 1960).

- alua



* L * -
(mlmI -m,s] mm; -ms;
sm, -s 87 sm, -5

KG = Elw™g - g| U1 UDoobEobEp (12)
m,m, -m,s7 m,m, -m,sS;
* * » *
L52ml -s,8] s,m; —szszj

In this memorandum we evaluate the eigenvalues of the matrix K,G,
invert the characteristic function ¢0(t), and obtain an expression for

the probability of error P_.



111 DIVERSITY CHANNEL MCDELS

Two correlated Gaussian random-~field transfer functions, Hl(t,f)
and Hg(t,f). serve to model the diversity channels., We assume that the

random fields are homeogeneous and identically distributed,
EH (e, fIH (t va,f+A)] = EMH(t, fIH (¢t +a,f +B)] = Ry(a,8) , (13a)
and that the cross correlation between the channels is simply given by

EMH](t, fIH,(t +a, f +8)] = pRy(a,B) (13b)
where

0 < el <1

Observe that Eq. (13b) can be interpreted in terms of a three-dimensional
random field (for example, we may consider diversity-antenna separation,
d, as the third dimension) in which the third-dimensional dependence can

be factored from the three-dimensional autocorrelation function R”(d,a.ﬁ):
‘R”(d,a,ﬁ) = C(d)Ry(a,B) = pRy(a,B) . (14)

The diversity correlation coefficient p as formulated in Eq. (13b)
is defined in terms of complex envelopes and can itself be complex. In
practice, one usually deals with the correlation between real envelopes.
In what follows we relate the magnitude of 0 to an easily measurable
quantity. the correlation coefficient between the squared envelopes at

zero time lag and zero frequency shift:

COV[!”1|2,|H2I2]
- . : (15)
Var’ (4, | 2Ivac’i(|H,] %)

where the t and f dependence has been suppressed in the H (t,f).



Covlla 1% lH,12) = EUH, 210,12 - EUIH, I 21EDIH, ] ?]

ELIH 121H,12) = EIHIH HHY)
= EHEHHY) + EHIHLELH H,) + EHH,E(H H)
= R2(0,0) + 0 + |p|2R2(0,0)

= (1 + lpl®HRZ(0,0)

CovllH,|2 |H,12) = (1 + |pl?)R2(0,0) - R2(0,0) = |pl2R2(0,0)

Var[|H2|2] = Var[l”llz] = E[l”ll‘] = E[|H|l2]

EllH,|%) = ElH HH H}]
= E(HH})E(H\H}) « E[H HEHH}] + E(H H)EH H})

= 233(0,0)

var(|H,]2) = 2R2(0,0) - R2(0,0) = R2(0,0)

From Eq. (15), we obtain

lol 2R2(0,0)
y = — = |p|? . (16)
RZ(0,0)

To simplify the evaluation and interpretation of the FSK error-
probability performance, we restrict our attention to the case in which
£ is a real quantity. In this case, the error probability will depend

on P2, the squared-envelope, diversity correlation coefficient.



iV FILTER OUTPUT COVARIANCES

The elements of the matrix K, G (omitting sign) are the elements of
the matrix K,, the covariance matrix associated with the filter outputs.
In lieu of the prior notation, M,, $,, M,, §,, it is convenient at this

point to express the four filter outputs as follows,

T 0
Vo) - J z (Oh (T - t)de . a7

~
"
a
@

where the index i indicates the diversity branch and r the mark or space

channel. All terms of the covariance matrix can be written in the form

T T
EWV(r DV (rp] = J [ E[z:(:l)z,(tz)]h:l(r - ‘n’“rz(T - ty)dedt, .

- /=@

. (18)

Equations (1) and (13) imply that

I y . 12mA b
ELZ (e 02, (e 0] = ke Jf XT0e, = Tk, = e T 2T s G 7 ) dndr
(19}
where
Lot o=
k;; =
g ir ¢ F
and
- 27 (Aa=78)
S, (a,7) = IJ e TR (a, B)dadp

is the channel scattering function.



The symmetric two-path case

R,(0,0)
S, (A7) = -——;—-— S(A = A')8(T = T') + 3(A + A)S(T + T') ), (20)

is particularly useful in analyzing systems operating over HF channels.
The channel is modeled as two discrete paths spaced 27’ in time delay
and 2\’ in Doppler shift. Let

T
A (\T) = J X(¢ -~ T (T - t)e'2" M tde ro= m,s, (21)

then, for the symmetric two-path case,

- R”(0,0) . .
EIViir )V, (r)) = b, ——— (AL (A, TDA,, (A7) +AL, (AT A (SN, =T')
13 J ¥} 2 lfl "2 l'l 1’2
(22)



V THE EIGENVALUES OF k.G

Let
€oir = E[Vr(r )V (r,)] (23a)
for r, = m,s, r, = m,s and ¢ = 1,2 , and
c - | o ; (23b)
€sa “Cus

then it follows from Eq. (22) that the matrix K,G can be written

C pC
K,G = (24)
rC C
We seek solutions (A and Y) to the equation
K,GY = AY . (25)
B tei
y setting v,
Y =
y2
and using Eq. (24), Eq. (25) becomes
Cc PrC Y, Y,
= A (26)
pC C Y, Y,
[.et the matrix C have eigenvectors X‘ and eigenvalues w,, i = 1,2,
then
CcX = w X , ¢t = 1,2 5 (27)

10



In Eq. (26) let ¥, = Y, = X

!

[(1 + p)ex, ] X,
= A
il + p)CXlJ LXl_
(1 + p)w X [ x,]
= A ,
(1 + ploX, X,

thus, if C has eigenvalues w, and w,, then K,G has eigenvalues (1 + p)w,

and (1 + p)w,. In Eq. (26) ler ¥, = -Y, = X,

T(l - pICX, FXIT
= A

-(1 - p)CX, -x.J

— — -

r(l - pPle X, X,
= A

-1 - plw X -X

L 220 [ e

thus, if C has eigenvalues w, and w,, then K, G has eigenvalues (1 - p)w,

and (1 ~ p)w,. Let the four eigenvalues of K,G be denoted by A, , = 1,2,
3,4 and the two eigenvalues of C by w,, t = 1,2, then:

A= (1 + plw
A, = (- pw,
Ay = (1 ¢+ plw,
A, = 1 - plw, . (28)

To evaluate w, and w,, we find the roots ri the quadratic equation,

lc - w1l = 0
(.4)2 - (cll - c:s)w + Icnx,2 = CanCss = 0 ' (29)
w (C.. - Cs:) %
R LA O PRI dle 12 7 (30)
w2 2 2 na 5s

1



One can verify that the above roots are real and that w, is positive and
s negative. The eigenvalues A, and A, are real and positive, and the

eigenvalues N and A, ure real and negative.



VI ERROR PROBABILITY EVALUATION

The probability density of the decision statistic Q is found by

inverting the characteristic function,

1 fm—
fola) - z—ﬂf et gt )de
) 1 4+, ® e .
fola) - —J e 9, (- is)ds
27 Lo
1 +,® 4
fole) = —[ e T (1 - A ) 'ds . (31)
271 - n= n

For ¢ < 0, the integrand in Eq. (31) goes to zero along an infinite semi-
circle in the left-hand plane; for ¢ > 0, the integrand goes to zero along
an infinite semicircle in the right-half plane. Thus, letting r_ denote
the residue of the integrand at the pole s = 1/A and evaluating the
integral in Eq. (31) by residues, we obtain:

fola) = : (32)

where

“g/A
ry = AZe TTH 0, - A . (33)

(The eigenvalues A and A, are positive, and the eigenvalues As and A‘
are negative.) Thus, given that mark is transmitted in the interval

(0,T), the probability of error can be written

13



P PiQ < 0] - __l‘: foladdg

S SAY 0] (A - AT - A3 A o-an b 34
P P, - A DL, - A (34)

The expression for the probability of error can be put in terms of

the elem2nts of the matrix C and the parameter p. Let

)
X = (ul - u)z = ((c. + )2 - 4|c.'l2}A (358)

(35b)
then

- 2 1 2 + 2
p ) (Y - X221 + p2)y X) ' (36)

ax[x? - p?y?]

14



VII THE FILTER-SIGNAL CROSS-AMBIGUITY FUNCTIONS

The functions,

v 127 ¢

ALNT) = [ o x(t = T)h (T - t)e dt (37a)
T 2

A, (N 7) = [ X(t - )W (T - )e' N tdr | (37b)

appearing in Eq. (22) represent the outputs of the mark and space filters
at time T when the channel introduces a time delay 7 and a Doppler shift
A. In this section we document these functions for two different trans-
missions and the narrowband filters assumed in Eq. (2). Since, for the

filters assumed in Eq. (2),

A (NT) = A _(N-28,T1)

it is sufficient to display A __(A,7)

Let
Ae'z"d' , t <0
Xx(t) = Ae™ 1 2mat , 02t 2T, (38)
Aet27A(r-2T) , T <t
then
ABe~ 2T ,
A (A7) = —am exp{[a + i2n(A +A)]+}
AB -aT + i2nlr)
+ exz{+ i277; lexp{(a + i27A)T} - exp{(a + i2nA)T}] ,
for 0<7T<T , (39a)



Ay - —ABTTT (e e i2m(n s 8y 1)
G ONE T @ i2n(n+2h) %P

, AB exp{-aT + i2707}

s T exp{{a « i27A)7} [exp{(a + i27A)T} - 1]

. AB exp{i27(AT - A7)}

T 2O 2) [1 - exp{[a+i2n(A +20)]17}

for -T<7<0 . (39b)

A more realistic transmission than that of Eq. (38) is obtained by

not assuming the transmitter to be in the space state for an infinite

past.
Let P
0 , t<-T
Ae 2T , T<te<0
x(t) = {Ae"z"m , 0<esT (40)
Aet Zmatem2m) T<tz<2T
L_o , 2T < ¢

then A __(\,7) is obtained by subtracting the term

AB exp{a(T =2T) + i2nlr(A+X) - T(A +20)]}
a + 2m(A +24)

L, (A7)

from Eqs. (39a) and (39b).

The error probability behavior is independent of any normalization
of the function A _(A,7). It is also interesting to observe that
A__(A,7) depends only on the following normalized parameters:

aT, a normalized filter time constant,
AT, a normalized frequency shift,
AT, a normalized Doppler shift,

7/T, a normalized time delay.



VIl CONCLUSIONS

Figures 2 through 9 summarize the asymptotic or irreducible error-
probability behavior of a dual-diversity FSK system with memory. All
figures pertain to the case in which the mark and space frequencies are
separated by the inverse of signaling-element duration (2AT = 1). The
symmetric two-path case, described in Eq. (20), is assumed. The differ-
erence in time delay between the two paths, divided by T, is referred to
as the time-delay spread 20_. Similarly, the difference in Doppler shift
between the two paths, multiplied by T, is referred to as the Doppler
spread 20,. The transmission described by Eq. (38) is referred to as the
infinite space past case and the transmission described by Eq. (40) 1is

referred to as the one element space past case.

It is interesting to observe that the time constant, aT = 2, yields
a significant improvement in performance over that obtained for oT = 1.
Also of interest is the fact that diversity is effective in combatting

channel dispersion for correlations as high as 0.8.
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